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Abstract

A two-dimensional generalized oscillator with time-dependent parameters is considered

to study the two-mode squeezing phenomena. Specific choices of the parameters are used

to determine the dispersion matrix and analytic expressions, in terms of standard hermite

polynomials, of the wavefunctions and photon distributions.

1 Introduction

In the middle of the sixties and beginning of the seventies a set of quantum states of the elec-

tromagnetic field were observed which have less uncertainty in one quadrature than a coherent

state [1-3]. These one-mode squeezed states have generated big expectations in optical commu-

nication systems [4]. In some quantized fields, the interaction hamiltonians occur only between

pairs of modes and then to understand the main features of the system, one restricts to study

one and two normal modes . In the last decade two-mode squeezing phenomena have attracted

attention to study properties of noise and correlations [5-8]. Recently the accidental degeneracy

of a two-dimensional (2-D) harmonic oscillator with frequency 0a0 plus an interaction proportional

to the z-th projection of the angular momentum was studied [9]. This system was called the

generalized 2-D harmonic oscillator because presents a bigger accidental degeneracy depending on

the strength A of the angular nlonmntum interaction. This model was generalized [10] to include

time-dependent parameters, m = roof(t) and ,_ = wo_o(t). If we take f(0) = A0(0) = 1; the

hamiltonian, for t = 0, represents a charged particle moving ill a constant magnetic field .

The aim of this work is to study two-mode squeezing phenomena with this model because it

demonstrates the change of dispersions due to variation of the mass and coupling constant during

the evolution. In the framework of quantum optics the hamiltonian is built by: the operator

(1/f + f)_ • if, that causes a time-dependent exchange of kinetic and potential energies within

each mode; the interaction 1/2(1/ f - f )( _ • a_ + _ . g), which describes a degenerate two-photon

interaction; and the potential iAo(t)(a_al - a[a2), that is a mode mixing operator.

The solution of the corresponding time dependent Schroedinger equation is obtained through

the theory of integrals of motion [11]. By means of Noether's theorem, using a special variation
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[10], we construct the linear time dependent integrals of the motion. The resulting quantum

invaxiants are given in terms of the positions and momenta operators [10,11] by

(i)

with the initial conditions/3(0) =/_and Q(0) = _', so that the 2 x 2 matrices previously introduced

satisfy ,kl(0) = ,k4(0) =/2 and ,k3(0) = ,k2(0) = 0. The operators ,4(t) = 1/v/'2[(_(t)/l + il/hP(t)]

and its hermitean conjugate, can be constructed with the matrices

)_p-_- _3"1- _)_1, ,_q-- _/_4"}-_/_2,
(2)

with l = _ defining the oscillator length. These integrals of motion also are given in terms
of the creation and annihilation photon operators

A(t) = MIE + M2# t, At(t) = M3_ + M4ff t • (3)

With the initial conditions A(0) = # and At(0) = a-'t, the matrices defined in (3) comply with

MI(0) = M4(0) =/2 and M3(0) = M2(0) = 0. The )_k's, Mk's, )_p and Aq are entries of symplectic

matrices in four dimensions because the invaxiants (1) and (3) satisfy the commutation relations

of Heisenberg-Weyl algebras.

In the present work, we study the behavior of the model for ,k0(t) an arbitrary function of time

and considering two kinds of varying masses, i.e., two choices for the function f(t), namely:

/(t) = exp(Tt) ; (4)

1/(t) = cosh2riot
{flo(t - T) sinh rioT + cosh floT} 2

For these two cases the Ak matrices take the general form

, t<_0

, 0<t<T

, T<_t

cos8 sin0_.,kk=#kR=#k --sin0 cos/9]' k=1,2,3,4; (6)

where the definition 0 = fg tJo,ko(r)dT was used. The analytic expressions for the #k's functions

axe given in Ref. [10]. In the next sections we determine the coherent and Fock-like states, the

photon distributions and the dispersion matrices in terms of these #k's.

2 Squeezed Coherent and Fock States

The coherent-like states are obtained by solving the differential equation A(t)ff0(_,t) = 0 with

A(t) given in Eq. (3). This solution yields the vacuum state of the physical system, and its phase

is chosen to guarantee that satisfies the time dependent Schroedinger equation. The expression

for the ground state wavefunction is

q)o(_,t) - v/_-_#pl exp{ 2-hi#'0""q'}pp (7)
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To get the last expression the relation (2) was used and the functions pp = _ (-_#, + 1/23) and

#q - _2 (_#2 + 1/24) were defined. To obtain the general expression for the eigenstates in the

coordinate representation one needs to apply the unitary operator/)(a) = exp{_ • )_t _ _.. Pt},

which is an invariant, to the vacuum wavefunction (7), i.e.,

ff_(q, t) = exp --T-lal= + 21_#p a. 5 + _-p-_#pq Ra _¢0(q, ) (8)

These are expressed in terms of multi-dimensional Hermite polynomials [12] through the relation

) .., (v)exp(-- u_*._*+v_*R_ = _ al a*n2H{UI2}n,,,,2=o nl! _ "''= 1_'7 (9)

Substituting the last expression into (8) and using the form of the coherent-like states in the

Fock-like representation, we get the Fock-like eigenstates in the coordinate representation:

(q"ln,n2) "0(,, t)H !,_n_ I2} i _.

These multi-dimensional Hermite polynomials are rewritten as a product of two standard one-

dimensional Hermite polynomials [12] as follows:

[ _I,,,_ ( ) = (_ /-tp _ (rq+nx,/2 ( 1 )_ I_p _) i . Hn, [COSe ql +sine q2]
n.,,.= - rtq 2/2/ vSgl#,l

(' )x 8. 2 vF2h[/2,[[-sine ql +cose q2] , (11)

where we use the explicit expression of matrix R. These Fock (10) and coherent (8) -like states

represent squeezed and correlated eigenstates of the system as it will be shown further.

3 Propagator

The propagator in the coherent state representation is given by the matrix elements of the evolution

operator U(t), which will be obtained by means of the theory of time dependent integrals of

motion [11]. If f(t) is an integral of motion then satisfies f(t)_f(t) = U(t)f(0). Taking its matrix

elements with respect to the coherent states, we get a linear system of differential equations, which

can be solved. Thus the propagator takes the form

G( .,.Lt)=exp(-I lU2-1 lU2)ex i' la.M-,M. ) (12)

For the cases (4) and (5), the following relations are satisfied

= --_ l#q- -Tl.tp _ gl, Mll]t42- vf_g 1 ll2q + -_/2p I2 -- g212 , (13)
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ih .\M_ x = 1R M3M11 1 l#*q + T#p)I2 -- g412 (14)
gx ' - x/_gl

Substituting these relations into the Eq.(12) we get the propagator, which through Eq. (9) can

be expressed in terms of multi-dimensional Hermite polynomials. If we compare with the power

series expansion of the propagator we get the probability amplitude for having n: and n2 photons

in the coherent-like state ]'7, t), i.e.,

(nln2l'7, t) -

By means of the Eq.(12) this amplitude can be rewritten in terms of standard Hermite poly-

nomials [12]. The squared absolute value of this amplitude yields the photon distribution function

of the system, w.,.2(q,t) = I(nln21"7,t)lL This will let us calculate, at least formally, the mean,

(Nk), and the mean squared fluctuation of the number of photons, (ANk) 2, in direction k, which

axe present in the coherent state 1"7,t). The expectation values of Nk and N_ are evaluated directly

using the expressions of the creation and annihilation photon operators in terms of the integrals

of the motion (3), and the commutation properties for these invariants. For the vacuum state one

has 1 2

(Nk) = (.: - m) 2+ m0_0m+ , (16)
mowo

(Ul -- U4) 2 "_- (Tn0W0U3 -I- --U2) 2

//_0030

{(.l q_ /z4)2 _l_(m0w0. 3 1 .2)2} -i-
mOO.) 0

i{ l ,},(_ m) • (:7)
m0o)0

With these expressions, we evaluate the ratio of the mean squared fluctuation (ANk) 2 and the

mean number of photons (Nk), which determines the nature of the distribution function of the

system:

(Ark) 2 m0w0

For the cases (4) and (5) the ratio is greater than one when t > 0, which implies that we have

a super-Poissonian photon distribution function. For t = 0, there is a discontinuity in the ratio,

which is obtained by comparing the following limiting procedures: making t ---+0 and then ff --+ 0,

and conversely.

4 Dispersion Matrices

The dispersion matrix can be written in terms of 2 x 2 matrices characterizing the dispersions

in the positions and momenta operators and the correlation between them. Besides for the cases

under study, due to (6), they take the form

a_(t) _hmowo 1 2 #])i, ' (19)= ((mo_0)2.2 +
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o_,.(t)= -_ .,._ + _o_o._l,,,I. , (20)

1 h

o_q(t) = 2 mo02o(#_ + (m°02°)2#32)I2 (21)

The corresponding correlation matrices for the creation and annihilation operators are obtained

immediately from the last expressions; they are given by

2 I{ 2 "_0°°= 3 "' - .2 + (=o02o)2._ 1 =0020"3"4)} (22)(=0020)2 2iL=-----_ow.o"'"2 +

Oo,o= _., + .2 + (=o02o)_._+ (=0020)2

2 1{ 2 "5 2i[ 1--.1.2 =0020.3#4)}{Tatot = 4 "1 -- .2 Jr" (=0020)2.32 (=0020)2 "Jr- F/10020 4-

(23)

(24)
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Fig. 1. Dispersion and correlation matrices behavior in positions and momenta

space for the studied cases in this paper: (a) corresponds to Eq.(4), and (b), to Eq.(5).
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The behavior of the dispersion matrices is illustrated in Fig. 1. For the case (4), we choose the

parameters "_ = 0.1 and m0 = w0 = 1. It is seen that there is squeezing for the coordinates and

stretching for the momenta. Also one notes that a m is a negative function and therefore there

are one-mode correlations between the coordinates and the momenta. If we reverse the sign of 7,

the roles between the dispersion for coordinates and momenta are interchanged, and a m becomes

positive. In the case (5), we use the parameters gt0 = 0.15, T = 10, and m0 = w0 = 1. In spite

of the mass is different that in the previous example, the general trends are similar. For example,

the a_ is an increasing function of time starting from its minimum value at t < 0, and there is

squeezing for the aqq. The main difference appears in the correlation apq: in this case, it can be

positive for large times, while in the previous one is negative or zero for any time.
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